Rutgers University: Algebra Written Qualifying Exam

 August 2016: Problem 2 SolutionExercise. Let T be a square matrix over \mathbb{C}.
(a) Show that if T is invertible and T^{k} is diagonalizable for some positive integer k, then T is diagonalizable.

Solution.

T is diagonalizable $\Longleftrightarrow \exists p$ with simple roots such that $p(x)=0$.
T^{k} is diagonalizable $\Longrightarrow \exists$ a monic polynomial f s.t.

$$
f\left(T^{k}\right)=\left(T^{k}-\lambda_{1} I\right)\left(T^{k}-{ }_{2} I\right) \ldots\left(T^{k}-\lambda_{n} I\right)=0
$$

and each λ_{i} is distinct.
Let $g(x)=f\left(x^{k}\right)=\left(x^{k}-\lambda_{1} I\right)\left(x^{k}-{ }_{2} I\right) \ldots\left(x^{k}-\lambda_{n} I\right)$.
Then $g(T)=f\left(T^{k}\right)=0$.
Moreover, since T is invertible, T^{k} is invertible and $\lambda_{i} \neq 0$ for all i
\Longrightarrow the roots of $g(x)$ are the $k^{\text {th }}$ roots of λ_{i}
\Longrightarrow the roots of $g(x)$ are simple
$\Longrightarrow T$ is diagonalizable.
(b) Show that the invertibility hypothesis cannot be omitted in (a).

Solution.

If T is not invertible then $\lambda_{i}=0$ for some i

$$
\begin{aligned}
g(x) & =f\left(x^{k}\right) \\
& =x^{k}\left(x^{k}-\lambda_{2} I\right) \ldots\left(x^{k}-\lambda_{n} I\right)=0 \\
& \Longrightarrow 0 \text { is a repeated root. }
\end{aligned}
$$

Counterexample:

$$
T=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

$T \neq 0$ and has eigenvalues 0 and 0 , and is not diagonalizable.

$$
T^{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \text { is a diagonal matrix. }
$$

