Rutgers University: Algebra Written Qualifying Exam August 2016: Problem 2 Solution

Exercise. Let T be a square matrix over \mathbb{C} .

(a) Show that if T is invertible and T^k is diagonalizable for some positive integer k, then T is diagonalizable.

Solution. T is diagonalizable $\iff \exists p$ with simple roots such that p(x) = 0. T^k is diagonalizable $\implies \exists a \text{ monic polynomial } f \text{ s.t.}$ $f(T^k) = (T^k - \lambda_1 I)(T^k - 2I) \dots (T^k - \lambda_n I) = 0$ and each λ_i is distinct. Let $g(x) = f(x^k) = (x^k - \lambda_1 I)(x^k - 2I) \dots (x^k - \lambda_n I)$. Then $g(T) = f(T^k) = 0$. Moreover, since T is invertible, T^k is invertible and $\lambda_i \neq 0$ for all i \implies the roots of g(x) are the k^{th} roots of λ_i \implies the roots of g(x) are simple $\implies T$ is diagonalizable.

(b) Show that the invertibility hypothesis cannot be omitted in (a).

Solution.

If T is not invertible then $\lambda_i = 0$ for some i

$$g(x) = f(x^k)$$

= $x^k(x^k - \lambda_2 I) \dots (x^k - \lambda_n I) = 0$
 $\implies 0$ is a repeated root.

Counterexample:

$$T = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

 $T \neq 0$ and has eigenvalues 0 and 0, and is not diagonalizable.

 $T^{2} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ is a diagonal matrix.